

QUARTERLY ACTIVITIES REPORT

SEPTEMBER 2014

HIGHLIGHTS

Beretta Project, Fraser Range

- New 100% owned 350km² Exploration License application (ELA 28/2501) made in the Albany Fraser Orogen (**Beretta Project**)
- Elevated nickel and copper values from historic shallow drilling, and untested magnetic high feature (**'MI6**')

Laverton Downs Project

- One metre re-sample 26.7 g/t Au confirms high-grade intercept
- Elevated drill hole zinc-lead assays including 1 metre @ 0.12% Zn, 661ppm Pb from EOH 40m (LDRB024)
- Elevated drill hole nickel assays confirm ultramatic sequence with nickel sulphide potential including **8 metres @ 0.33% Ni** from 25m (LGRB018)

Lake Wells Project

- Encouraging drill hole base metal nickel and copper results including:
 - 49 metres @ 0.22% Ni from 10 metres (LGRB046), and
 - 2 metres @ 441 ppm Cu from 8 metres (LGRB042)

Corporate

- Board restructure completed during the quarter
- Oversubscribed placement completed raising \$340,000

BERETTA PROJECT - 100% Goldphyre

During the quarter, a new 100% owned Exploration License application was made covering 350km² of the base metals prospective Albany Fraser Orogen (Figure 1). Grant of the tenement is expected in the March 2015 quarter.

The Company is collating the limited available open file data from previous explorers with a view to commencing work at the Project in the June 2015 quarter. Elevated nickel, copper and zinc values have been recorded, and regional magnetic images indicate several crosscutting lineament features, and a circular magnetic high feature: '**MI6**' (Figure 2).

 street:
 Ground floor, 20 Kings Park Road, West Perth WA 6005 postal: PO Box 1941, West Perth WA 6872

 t:
 +61 8 9389 2111
 f:
 +61 8 9389 2199
 e:
 info@goldphyre.com.au
 acn:
 149 390 394

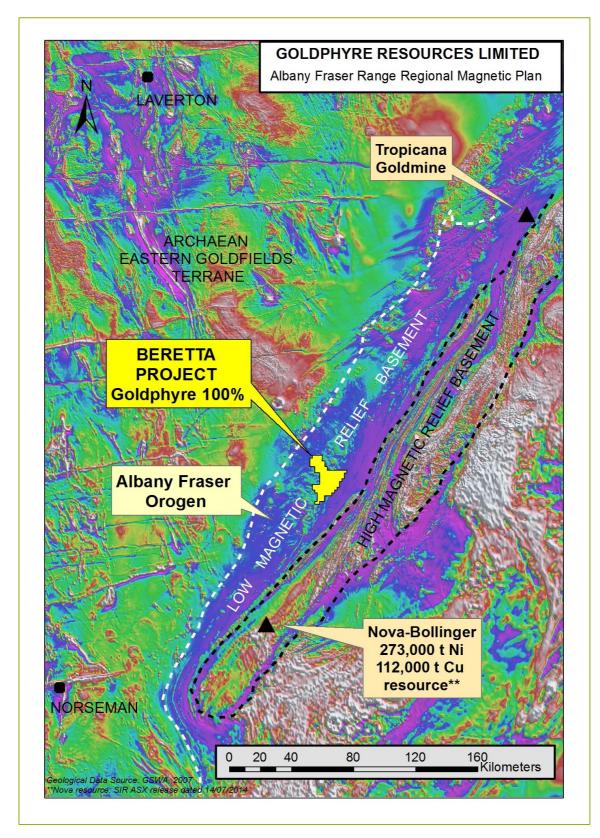


Figure 1. Beretta Project location

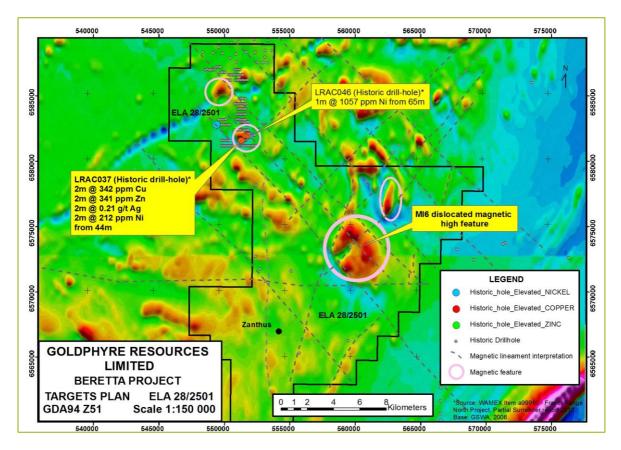


Figure 2. Regional aeromagnetic plan showing **MI6** magnetic high feature and crosscutting magnetic lineaments at the **Beretta Project**

LAVERTON DOWNS PROJECT - 100% Goldphyre

One metre resampling targeting elevated nickel and a previously reported high-grade gold intercept was completed. The one-metre results confirmed elevated nickel values in a weathered ultramafic sequence on the western margin of the Project area (Table 1). A check resample of a previously reported one-metre intercept (LDRB025, 23 - 24m, ASX announcement 22 January 2014) confirmed the high-grade result with an assay of 26.7 g/t Au.

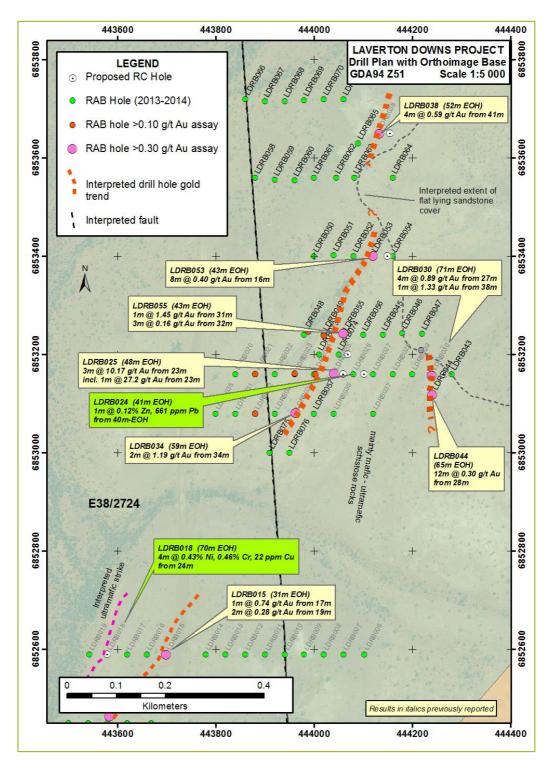
Recent drilling (Figure 3, Tables 1 & 2) demonstrates a +1 g/t Au, 400m long, shallow drill hole gold anomaly open to the north with a maximum gold intercept to date of 3m @ 10.17 g/t Au from 23m in LDRB025 (ASX announcement 22 January, 2014).

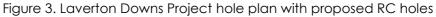
A second shallow +1 g/t drill hole gold anomaly is located 400m to the east and is open to the north and south.

The north north-easterly trending gold anomaly is interpreted to extend beneath several RAB holes that failed to penetrate flat lying, interpreted Permian Age cemented sandstone (anomalous gold in drill hole trend through holes LDRB025-LDRB055-LDRB053-LDRB038, Figure 3) and is open to the north. An interpreted southerly trending gold in drill hole anomaly (LDRB030-LDRB044) also remains open to the south. The +1 g/t Au intercepts are interpreted to be

hosted in weakly quartz veined, moderately weathered, chlorite-biotite schistose mafic rocks and fine-grained feldspar-quartz rich intermediate rocks.

Elevated nickel and coincident zinc-lead values from shallow RAB drilling require follow-up. The elevated zinc-lead EOH intercept in LDRB024 was recorded in the hole adjacent to the high-grade gold intercept (LDRB025) and will be tested with follow-up RC drilling in the December quarter.


Hole	Hole Type	N (m)	E (m)	RL	Dip	Azi.	From (m)	To (m)	Width (m)	Ni (%)	Hole Depth (m)
LDRB017	RAB	6852590	443620	480	60	270	12	16	4	0.26	40
LDRB018	RAB	6852590	443580	479	60	270	25	33	8	0.33	70


Table 1. Laverton Downs drill hole 1m sample assay results - Nickel

Hole	Hole Type	N (m)	E (m)	RL	Dip	Azi.	From (m)	To (m)	Width (m)	Au (g/t	Hole Depth (m)
LDRB025	RAB	6853160	444040	483	60	270	23	26	3	10.17*	48
	Including re-split result of						23	24	1	26.70	70

Table 2. Laverton Downs drill hole 1m sample assay results - Gold (*previously reported)

Forthcoming exploration

A 1,000m RC drilling program has been finalised for Laverton Downs to test shallow gold/base metal intercepts including the high-grade gold result in LDRB025 at depth and along strike.

LAKE WELLS PROJECT - 100% Goldphyre

A reconnaissance RAB/AC drilling program was completed in May – June 2014 and results received in the reporting period (ASX announcement 17 July 2014).

The drilling targets included an interpreted northeast magnetic structure covered by a small saltpan at the Axford Prospect, along with reconnaissance RAB/AC drilling in the central and southeastern areas, to evaluate historic geochemistry & geophysical, and AC drill hole anomalies (Figure 4).

Central Area

Reconnaissance RAB drilling targeted elevated historic base metal (nickelcopper-zinc) potential in the Central Area (E38/2113) (Tables 3, 4 & 5, Figures 4 & 5). The RAB drilling confirmed a north northwest trending ultramatic sequence with elevated nickel values (49m @ 0.22 % Ni, LGRB046) adjacent to a foliated in part granitic-gneissic rock contact (Table 4). Goldphyre drilling recorded granitic/gneissic rocks with schistose in part serpentine-chlorite rich ultramatic rocks.

No deep RC or diamond drilling has been completed in the Central Area. Reconnaissance soil and rock-chip geochemistry was completed with a best result of 40 ppb Au from a surficial conglomerate rock chip sample in the Central Area (Figure 5).

An encouraging base metal intercept was recorded in LGRB042 (Table 5, Figure 5). The elevated copper value was recorded in a weakly magnetic, partially weathered granitic rock at very shallow depth at the end of hole and on the end of the reconnaissance drill line.

Project	Hole ID	Hole Type	# of holes	Metres	Samples
Lake Wells	lgac138-lgac185	AC	48	1560	270
Lake Wells	LGRB040-LGRB051	RAB	12	421	95
		Total	60	1981	365

Hole	Hole Type	N (m)	E (m)	RL	Dip	Azi.	From (m)	To (m)	Width (m)	Ni (%)	Hole Depth (m)
LGRB043	RAB	6968955	526490	484	90	0	35	42	7*	0.16	42
LGRB046	RAB	6970160	525880	500	90	0	10	59	49	0.22	60
					inc	luding	25	30	5	0.30	
LGAC172	AC	6989120	500025	451	90	0	15	36	21*	0.11	36

Table 4. Lake Wells Central Area - Nickel intercepts (*end of hole intercept)

Hole	Hole Type	N (m)	E (m)	RL	Dip	Azi.	From (m)	To (m)	Width (m)	Cu (ppm)	Hole Depth (m)
LGRB042	RAB	6968940	526255	484	90	0	8	10	2*	441	10

Table 5. Lake Wells Central Area - Copper intercept (*end of hole intercept)

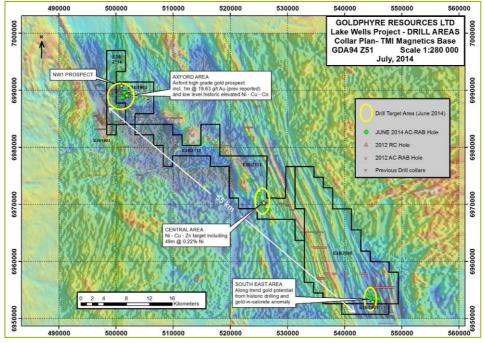
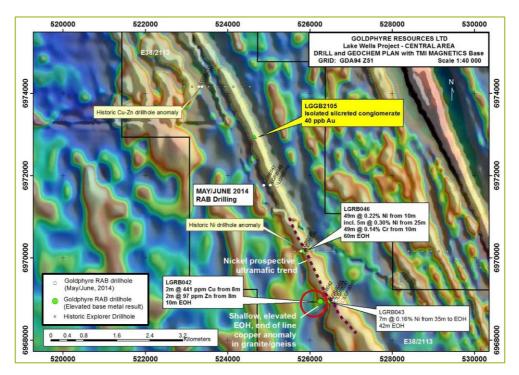



Figure 4. Lake Wells summary plan – drill collars with TMI magnetics base map

Figure 5. Lake Wells Central Area

West Area

AC drilling targeted gold and base metal drill anomalies in the Lake Wells West Area (E38/1903) (Table 6, Figure 6). A small saltpan with no previous drilling was also tested. The shallow AC drilling and one metre sampling has outlined a new, interpreted north trending +100 ppb gold anomaly in porphyry/granite.

Composite gold assay results (ASX announcement 17 July 2014) reported are considered modest but it should be noted that three of the four shallow gold intercepts in Table 6 are end of hole (EOH) results and significant gold intercepts have been recorded beneath shallow, modest gold anomalies of similar tenor at Axford (including Goldphyre RC hole, LGRC011, 6m @ 3.46 g/t Au, drilled beneath shallow historic hole SDNI1, 2m @ 0.30 g/t Au, ASX announcement 28 September 2012).

Hole	Hole Type	N (m)	E (m)	RL	Dip	Azi.	From (m)	To (m)	Width (m)	Au (ppb)	Hole Depth (m)
LGAC157	AC	6989270	501850	448	90	0	27	28	1	192	33
LGAC159	AC	6989270	501930	447	90	0	29	30]*	126	30
LGAC164	AC	6989350	501830	448	90	0	25	27	2*	328	27
LGAC167	AC	6989630	501640	451	90	0	30	32	2*	148	32

Table 6. Lake Wells Gold Intercepts (Composite and One metre results >100 ppb Au) (* end of hole intercept)

Logging in the Axford and NW1 areas revealed mainly porphyry/granite/gneissic rock types with weathered basaltic/ultramafic rock types also recorded. Anomalous nickel values were recorded in a talc chlorite ultramafic schistose sequence in LGAC172 to the west of the Axford gold prospect (Figure 4). No anomalous results were recorded at NW1 and the Steep Isle prospects.

South East Area

A reconnaissance line of AC drilling (Figure 4) targeted along trend potential of historic end-of-hole gold anomalism¹ to the south of the Project area, coupled with the reported success of adjacent tenement holder Gold Road Resources Ltd's geophysical (SAM) survey targeting (GOR ASX announcement 14 August 2013). Three holes were also drilled on a calcrete anomaly with no significant results recorded.

Although drilling encountered 5m - 15m of running sands above hard silcrete/Permian age sandstone, 93% of holes penetrated lower saprolite or weathered Archaean basement. No anomalous gold values were recorded in this wide spaced (80m centres) drilling.

¹ A72218. Vinar, J, 2005. Yamarna Group 1 Annual Report E38/610, E38/1567 and P38/3169. Terra Gold Mining Limited, page 3.

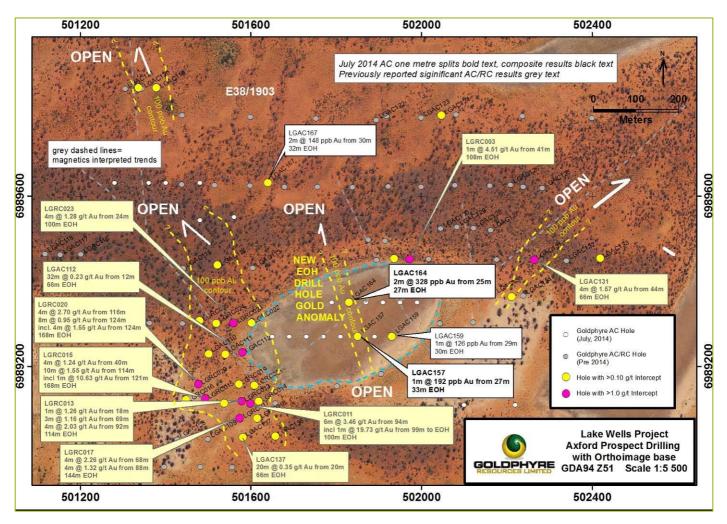


Figure 6. Lake Wells West Area including Axford summary plan

Lake Wells Brine Sampling

Preliminary pit sampling/historic drill hole sampling for potash brine potential in the Lake Wells playa lake areas was completed and results received (Figure 7, Appendix 4). The reconnaissance pit sampling recorded several samples with elevated K (potassium) and SO₄ (sulphate) values – the element and compound that combine for sulphate of potash (Sulphate of Potash K₂SO₄). The best K result was 5790 mg/l (5.79 kg per cubic metre) or a calculated 12.09 kg/m³ Sulphate of Potash (SOP, Appendix 4) in LGW009.

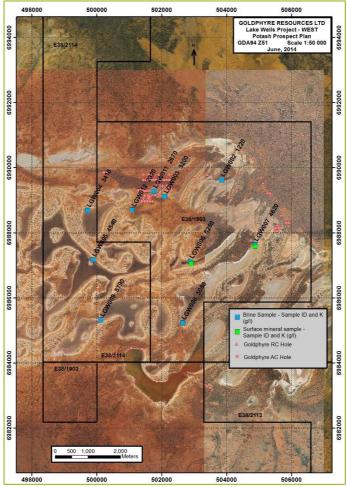


Figure 7. Lake Wells reconnaissance brine sampling plan

KILKENNY PROJECT - 100% Goldphyre

Results from recent field reconnaissance and rock chip/soils geochemistry work (Table 7, Figure 8) were received in the reporting period (ASX announcement 19 July 2014).

Project	Sample ID	Sample Type	# Samples
Kilkenny	KKSS2001-KKSS2013	SOIL	13
Kilkoppy	KKGB0101-KKGB0104,	ROCKCHIP/	Q
Kilkenny	KKGB0107-KKGB0111	HISTORIC DRILL CHIPS	9
		Total	22

Table 7. Kilkenny Geochemistry Sampling.

Remnant sample material from several historic RAB/AC drill holes was sampled along with two orientation soil sampling lines and selective rock chip sampling

in an area of historic high soil and rock chip values. Previous explorer, Minefields Consolidated (1986)² returned rock chip scree samples (sub-crop and areas of chert on the surface) assaying up to 3.66 g/t Au and an approximate east - west, 300 metre long (open in both directions) +250 ppb Au soil anomaly. This anomaly has been poorly tested by historic shallow drilling.

A best gold result of 1.91 g/t Au (KKGB0108) was recorded from surface quartz vein scree. This quartz vein material location does not appear to have been drill tested. A line of previous explorers' drilling was located 400 metres to the south of the KKGB0108 sample site. A sample collected from an historic drill hole consisting of drill chips with quartz vein fragments and limonite after possible pyrite grains recorded 0.26 g/t Au (KKGB0110).

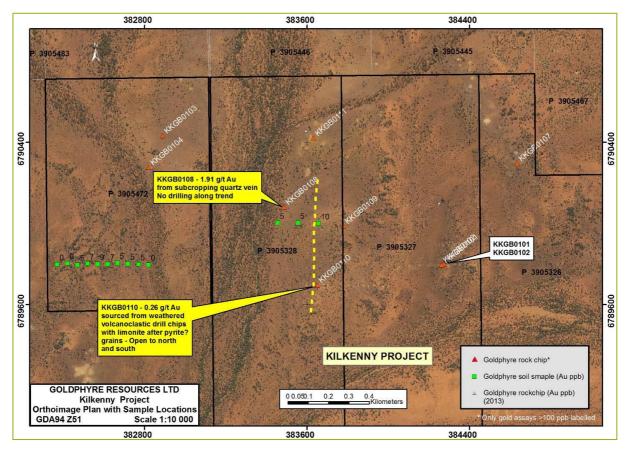


Figure 8. Kilkenny Project geochemistry sampling

² A18666. Exploration Report on and Review of Prospecting Licence Areas P39/671 Oldfield Well Prospect and P39/670 Kilkenny Creek Prospect. Minefields Consolidated. 1986.

ISLAND VIEW PROJECT - 100% Goldphyre

No fieldwork was completed on the Island View Project during the reporting period.

IGUANA PROJECT – 100% Goldphyre

No fieldwork was completed on the Iguana Project in the reporting period.

YAMARNA PROJECT

The Yamarna Project was surrendered following a project assessment review in the reporting period.

TENEMENTS

Three tenement applications were granted in the period.

Project	Tenement ID	# of blocks
KILKENNY	P39/5472	NA
KILKENNY	P39/5473	NA
KILKENNY	P39/5474	NA

A voluntary partial surrender was completed on Lake Wells tenement E38/2113 (Retained blocks: 34, Surrendered blocks: 18).

Surrendered tenure is shown in Appendix 5.

CORPORATE

A recent Board restructure (ASX announcement 23 July 2014) saw the appointment of Mr Matt Shackleton and Mr Dean Goodwin as Executive Chairman and Non-Executive Director respectively.

On 23 July 2014, Mr Ron Punch stepped down from the Board. Mr Punch had held the position as Chairman from the Company's listing on ASX.

On 30 September 2014, Mr Chris Clegg resigned from the Board. Mr Clegg had held a non-executive directorship with the Company since it listed on ASX.

CASH POSITION

At 30 September 2014, the Company had cash reserves of \$616,000.

CONTACT

Matt Shackleton Executive Chairman <u>m.shackleton@goldphyre.com.au</u> +61 (0) 438 319 841 Brenton Siggs Technical Director <u>b.siggs@goldphyre.com.au</u> +61 8 9389 2111

Competent Person's Statement

The information in this report that relates to Exploration results, Mineral Resources or Ore Reserves is based on information compiled by Mr Brenton Siggs who is a member of the Australasian Institute of Geoscientists. Mr Siggs is contracted to the Company through Reefus Geology Services and is a Non-Executive Director (Exploration Manager) of Goldphyre Resources Limited. Mr Siggs has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity currently being undertaken to qualify as a Competent Person as defined in the 2012 edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Siggs consents to the inclusion in this report of the matters based on his information in the form and context in which it appears. Mr Siggs is a shareholder and director of Goldphyre WA Pty Ltd, a company that holds ordinary shares and options in the capital of Goldphyre Resources Limited (Goldphyre Resources Limited, Annual Financial Report 2014).

Forward Looking Statements Disclaimer

This announcement contains forward-looking statements that involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future develop

APPENDIX 1

Hole	Hole Type	N (m)	E (m)	RL	Dip	Azimuth	Hole Depth (m)
LGAC138	AC	6954205	543840	538	90	0	37
LGAC139	AC	6954114	544396	532	90	0	51
LGAC140	AC	6953400	545406	518	90	0	43
LGAC141	AC	6953404	545482	517	90	0	50
LGAC142	AC	6953400	545638	523	90	0	42
LGAC143	AC	6953400	545796	517	90	0	49
LGAC144	AC	6953400	545960	517	90	0	51
LGAC145	AC	6953406	545235	517	90	0	53
LGAC146	AC	6953400	545080	522	90	0	43

DRILL COLLAR DATA

Hole	Hole Type	N (m)	E (m)	RL	Dip	Azimuth	Hole Depth (m)
LGAC147	AC	6953404	544922	522	90	0	45
LGAC148	AC	6953406	544762	520	90	0	46
LGAC149	AC	6954200	543922	530	90	0	41
LGAC150	AC	6955400	544560	530	90	0	48
LGAC151	AC	6955400	544400	534	90	0	51
LGAC152	AC	6989270	501650	447	90	0	26
LGAC153	AC	6989270	501690	447	90	0	20
LGAC154	AC	6989270	501730	447	90	0	31
LGAC155	AC	6989270	501770	447	90	0	26
LGAC156	AC	6989270	501810	448	90	0	36
LGAC157	AC	6989270	501850	448	90	0	33
LGAC158	AC	6989270	501890	448	90	0	28
LGAC159	AC	6989270	501930	447	90	0	30
LGAC160	AC	6989350	501990	447	90	0	27
LGAC161	AC	6989350	501950	447	90	0	35
LGAC162	AC	6989350	501910	447	90	0	29
LGAC163	AC	6989350	501870	447	90	0	26
LGAC164	AC	6989350	501830	448	90	0	27
LGAC165	AC	6989350	501790	448	90	0	25
LGAC166	AC	6989630	501480	455	90	0	23
LGAC167	AC	6989630	501640	451	90	0	32
LGAC168	AC	6989630	501280	451	90	0	29
LGAC169	AC	6989630	501360	451	90	0	27
LGAC170	AC	6991150	500350	450	90	0	5
LGAC171	AC	6991150	500400	450	90	0	8
LGAC172	AC	6989120	500025	451	90	0	36
LGAC173	AC	6989120	499985	450	90	0	9

Hole	Hole Type	N (m)	E (m)	RL	Dip	Azimuth	Hole Depth (m)
LGAC174	AC	6989120	499910	450	90	0	22
LGAC175	AC	6988700	501260	450	90	0	24
LGAC176	AC	6988700	501100	450	90	0	20
LGAC177	AC	6988700	500940	450	90	0	15
LGAC178	AC	6987175	499990	449	90	0	42
LGAC179	AC	6987172	499940	447	90	0	50
LGAC180	AC	6987170	499890	447	90	0	24
LGAC181	AC	6989630	501400	451	90	0	22
LGAC182	AC	6989550	501560	453	90	0	22
LGAC183	AC	6989543	501480	453	90	0	20
LGAC184	AC	6989110	502220	451	90	0	48
LGAC185	AC	6989110	502100	455	90	0	33
LGRB040	RAB	6968960	526800	480	90	0	43
LGRB041	RAB	6968960	526640	484	90	0	23
LGRB042	RAB	6968940	526255	484	90	0	10
LGRB043	RAB	6968955	526490	484	90	0	42
LGRB044	RAB	6968960	526560	484	90	0	28
LGRB045	RAB	6970160	525800	501	90	0	33
LGRB046	RAB	6970160	525880	500	90	0	60
LGRB047	RAB	6971760	524880	505	90	0	24
LGRB048	RAB	6971765	525040	505	90	0	27
LGRB049	RAB	6971752	525204	510	90	0	39
LGRB050	RAB	6974160	523380	480	90	0	52
LGRB051	RAB	6974160	523300	484	90	0	41

Datum: GDA94 Zone 51 Co-ordinate system with sample pickup by hand-held GPS Garmin 60.

APPENDIX 2

LAKE WELLS BASEMETAL ASSAY DRILL RESULTS

Hole_ID	from	to	Interval	Cr(ppm)	Cu(ppm)	Ni(ppm)	Pb(ppm)	Zn(ppm)	Depth
LGRB042	8	10	2	38	441	34	9	97	10
LGRB043	35	42	7	1994	8	1671	3	69	42
LGRB046	10	59	49	1387	7	2199	6	81	60
		incl.	5	1545	10	3042	2	74	
LGAC172	15	36	31	2435	41	1106	0	65	36

KILKENNY GEOCHEMISTRY ASSAY RESULTS

SampleID	N (m)	E (m)	RL	Sample	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	Rock_description
KKGB0101	6789800	384273	395	DRILL	5	-0.5	21	83	129	15	57	saprolite from historic drillhole
KKGB0102	6789795	384263	397	DRILL	24	-0.5	7	128	379	4	79	saprolite from historic drillhole
KKGB0103	6790433	382889	401	ROCK	-5	-0.5	4	25	14	-2	10	quartz vein scree
KKGB0104	6790276	382821	394	ROCK	51	-0.5	111	66	441	7	238	laterite
KKGB0107	6790296	384634	402	ROCK	8	-0.5	88	35	66	10	24	laterite
KKGB0108	6790081	383487	401	ROCK	1906	-0.5	169	48	37	3	54	quartz vein scree
KKGB0109	6789987	383780	397	ROCK	6	-0.5	-2	1	7	-2	5	laminated quartz vein subcrop
KKGB0110	6789697	383650	391	ROCK	263	-0.5	7	95	140	2	49	saprock from historic drillhole
KKGB0111	6790421	383632	393	ROCK	10	-0.5	69	261	49	10	43	saprolite
KKSS2001	6789795	382820	398	SOIL	-5	-0.5	24	51	221	18	60	soil
KKSS2002	6789798	382770	398	SOIL	5	-0.5	28	41	134	20	44	soil
KKSS2003	6789801	382719	398	SOIL	5	-0.5	32	43	183	21	49	soil
KKSS2004	6789805	382667	398	SOIL	5	-0.5	25	45	138	21	54	soil
KKSS2005	6789800	382620	397	SOIL	7	-0.5	35	42	137	22	42	soil
KKSS2006	6789800	382570	397	SOIL	9	-0.5	28	45	147	23	54	soil
KKSS2007	6789802	382520	397	SOIL	7	-0.5	23	50	115	23	61	soil

SampleID	N (m)	E (m)	RL	Sample	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	Rock_description
KKSS2008	6789795	382470	397	SOIL	5	-0.5	24	39	103	21	50	soil
KKSS2009	6789803	382420	397	SOIL	-5	-0.5	28	42	107	21	48	soil
KKSS2010	6789798	382370	399	SOIL	-5	-0.5	28	42	108	21	42	soil
KKSS2011	6790002	383456	394	SOIL	5	-0.5	12	61	147	17	87	soil
KKSS2012	6790002	383556	394	SOIL	5	-0.5	24	59	149	21	67	soil
KKSS2013	6790000	383656	394	SOIL	10	-0.5	23	62	150	26	83	soil

Note: Negative sign = below detection limit

APPENDIX 3

LAKE WELLS GEOCHEMISTRY RESULTS

Sample ID	Northing	Easting	Sample Type	Au (ppb)	Ag (ppm)	As (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Mn (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	Comments
LGGB2104	6960832	536932	ROCK	2	<0.5	60	4	182	11	30	21	30	4	friable nodular FeO carb scree/subcrop
LGGB2105	6972944	524653	ROCK	40	<0.5	<2	5	87	5	194	24	6	5	silcrete surficial conglomerate subcrop
LWSS6001	6960900	537050	SOIL	1	<0.5	<2	3	30	5	61	7	4	12	red brown sand and silt
LWSS6002	6960900	537000	SOIL	2	<0.5	4	2	41	7	75	7	6	9	red brown sand and silt
LWSS6003	6960900	536950	SOIL	2	<0.5	73	7	248	37	22	15	19	5	red brown sand and silt with carb nodules
LWSS6004	6960900	536900	SOIL	1	<0.5	8	3	45	6	56	7	7	8	red brown sand and silt

Note: Au (ppb) all other elements ppm

APPENDIX 4

LAKE WELLS BRINE RESULTS

Sample	Ν	E	RL	Depth	К	SOP	SO4	Ca	Na	CI	Mg	TDS
ID	(m)	(m)			(mg/l)	(kg/m3)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
LGWB006	6987109	502892	446	0.30	1690	3.77	21600	6250	20000	33600	1920	NA
LGWB007	6987643	504878	444	0.00	5650	12.6	38500	7390	62800	100000	4480	NA
LGW002	6989624	503851	456	1.50	1220	2.72	5260	623	18300	30600	1740	NA
LGW003	6989110	502100	451	5.50	3200	7.14	13400	1010	48900	76500	5390	160000
LGW004	6988689	499721	448	0.50	3410	7.6	20100	694	52900	84600	6870	NA
LGW005	6987170	499890	447	0.60	4540	10.12	22700	579	68700	101000	9840	NA
LGW006	6987109	502892	446	0.30	5250	11.71	17400	712	73200	115000	7540	237000
LGW007	6987643	504878	444	0.40	4620	10.3	14800	922	65700	101000	6270	NA
LGW008	6985230	502650	449	0.60	5080	11.33	16200	573	76100	122000	8530	NA
LGW009	6985320	500131	449	0.60	5790	12.91	23000	463	79700	135000	12600	287000
LGW011	6989270	501770	447	0.60	2670	5.95	12200	1090	42500	68600	4680	NA
LGW012	6988700	501100	450	2.80	2320	5.17	10800	749	37700	55500	3870	131000

LGWB006-007: evaporite grab sample, LGW002,003,012: Brine Sample from historic drill-hole, SOP = K x 2.23/1000, TDS : Sum of Anion and cation results and should approach the Total Dissolved Solids (TDS) value, GDA_N, GDA_E, RL, Depth units=metres, NA=Not analysed

APPENDIX 5 TENEMENT SCHEDULE – 30 SEPTEMBER, 2014

Project	Tenement	Location	Interest at beginning of quarter	Acquired / Disposed	Interest at end of quarter
Hack Well	ELA38/2945	Laverton, WA	100	NA	100
Iguana	E16/447	Ora Banda, WA	100	NA	100
Island View	E15/1049	Higginsville, WA	100	NA	100
Island View	E15/1050	Higginsville, WA	100	NA	100
Island View	P15/5647	Higginsville, WA	100	NA	100
Kilkenny	E39/1702	Leonora,WA	100	0	0
Kilkenny	P39/5310	Leonora,WA	100	0	0
Kilkenny	P39/5311	Leonora,WA	100	0	0
Kilkenny	P39/5312	Leonora,WA	100	0	0
Kilkenny	P39/5313	Leonora,WA	100	0	0
Kilkenny	P39/5314	Leonora,WA	100	0	0
Kilkenny	P39/5315	Leonora,WA	100	0	0
Kilkenny	P39/5316	Leonora,WA	100	0	0
Kilkenny	P39/5317	Leonora,WA	100	NA	100
Kilkenny	P39/5318	Leonora,WA	100	NA	100
Kilkenny	P39/5319	Leonora,WA	100	0	0
Kilkenny	P39/5320	Leonora,WA	100	0	0
Kilkenny	P39/5321	Leonora,WA	100	NA	100
Kilkenny	P39/5322	Leonora,WA	100	NA	100
Kilkenny	P39/5323	Leonora,WA	100	NA	100
Kilkenny	P39/5324	Leonora,WA	100	NA	100
Kilkenny	P39/5325	Leonora,WA	100	0	0
Kilkenny	P39/5326	Leonora,WA	100	0	0
Kilkenny	P39/5327	Leonora,WA	100	0	0

Project	Tenement	Location	Interest at beginning of quarter	Acquired / Disposed	Interest at end of quarter
Kilkenny	P39/5328	Leonora,WA	100	NA	100
Kilkenny	P39/5329	Leonora,WA	100	0	0
Kilkenny	P39/5472	Leonora,WA	100	NA	100
Kilkenny	P39/5473	Leonora,WA	100	NA	100
Kilkenny	P39/5474	Leonora,WA	100	NA	100
Lake Wells	E38/1903	Laverton, WA	100	NA	100
Lake Wells	E38/2113	Laverton, WA	100	NA	100
Lake Wells	E38/2114	Laverton, WA	100	NA	100
Lake Wells	E38/2505	Laverton, WA	100	NA	100
Lake Wells	E38/2901	Laverton, WA	100	NA	100
Laverton Downs	E38/2724	Laverton, WA	100	NA	100
Laverton Downs	ELA38/2941	Laverton, WA	100	NA	100
Mailman Hill	E37/990	Leonora,WA	100	NA	100
Mailman Hill	P37/7877	Leonora,WA	100	NA	100
Yamarna	E38/1949	Laverton, WA	100	0	0