

THE LAKE WELLS POTASH PROJECT

Australian potash for Australian farmers

"Currently 100% of Australia's potash is imported. The development of a local source of potash would be a significant win for Australian farmers"

DISCLAIMER & FORWARD LOOKING STATEMENTS

This presentation has been prepared by Goldphyre Resources Ltd ("GPH"). It contains background information about GPH current at the date of this presentation. The Directors of the Company are not aware of any information that alters the accuracy of this information since its original publication. The presentation is in summary form and does not purport to be all inclusive or complete. All information presented here is available through the Australian Securities Exchange, where all of the Company's previous announcements can be found. Recipients should conduct their own investigations and perform their own analysis in order to satisfy themselves as to the accuracy and completeness of the information, statements and opinions contained in this presentation. This presentation is for information purposes only. Neither this presentation nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of GPH shares in any jurisdiction. This presentation may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in such jurisdiction. Recipients should inform themselves of the restrictions that apply in their own jurisdiction. A failure to do so may result in a violation of securities laws in such jurisdiction. This presentation does not constitute investment advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this presentation are not intended to represent recommendations of particular investments to particular people. Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments. To the fullest extent permitted by law, GPH, its officers, employees, agents and advisers do not make any representation or warranty, express or implied, as to the currency, accuracy, reliability or completeness of any information, statements, opinions, estimates, forecasts or other representations contained in this presentation. No responsibility for any errors or omissions from this presentation arising out of negligence or otherwise is accepted. This presentation may include forward looking statements. Forward looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of GPH. Actual values, results or events may be materially different to those expressed or implied in this presentation.

JORC RESOURCE

Global Resource*

	Contained SOP (Mt)	Grade (kg/m³)
Total porosity	70	8.05
Drainable porosity	18.4	8.05
Including HIGH GRADE ZONE targeted for immediate assessment	10.5	9.03

"Logistics, location, potential CAPEX, ability to get the brine . . . these are vital when considering a brine SOP project"

Recoverable SOP

Using Drainable porosity, or 'Specific Yield', we can estimate the amount of SOP recoverable from the total, insitu SOP (which is measured using Total porosity)

Number of ASX listed companies in Australia with a SOP JORC Resource

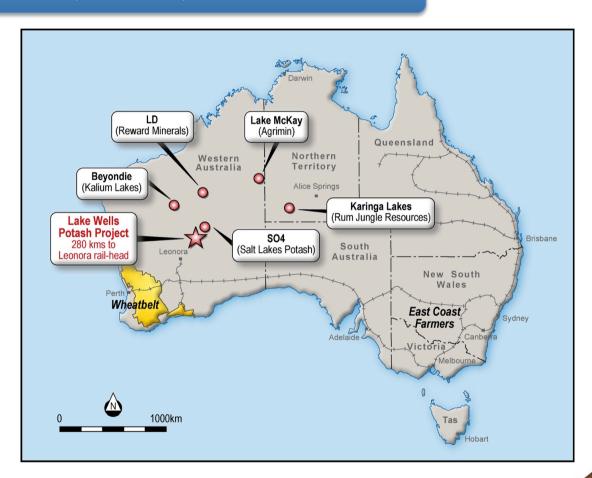
5

Number of these JORC Resources reported using drainable porosity/specific yield

2

Company	Total porosity Resource (Mt)	Specific yield Resource (Mt)	Market Capitalisation (\$Am, undiluted) 27 June 2016
Goldphyre (GPH)	70	18.4	17
Agrimin (AMN)	123	22	48
Reward (RWD)	564	-	58
Salt Lake Potash (SO4)	85	-	44
Rum Jungle (RUM)	14	-	20

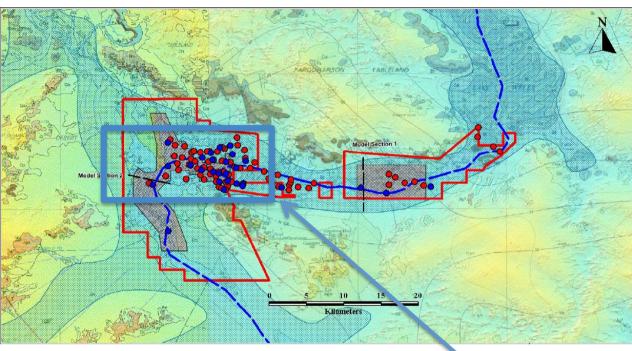
^{*}Please see Appendix 1 for full Resource Estimate details


LOGISTICS

Location, location

- LOGISTICS ARE VITALLY IMPORTANT TO BULK MINERAL PROJECTS
- BUILDING ROAD INFRASTRUCTURE AND ESTABLISHING PORT ACCESS IS COSTLY
- GPH'S LAKE WELLS POTASH PROJECT HAS EXISTING ROADS TO IT
- GPH IS LOOKING TO MEET THE DOMESTIC DEMAND FOR SOP

GPH WILL ASSESS THE LOWEST COST, INCREMENTAL CAPEX DEVELOPMENT

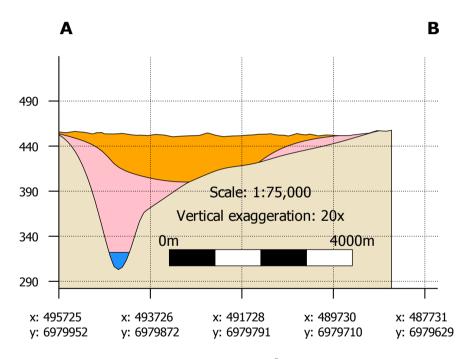


THE LAKE WELLS POTASH PROJECT

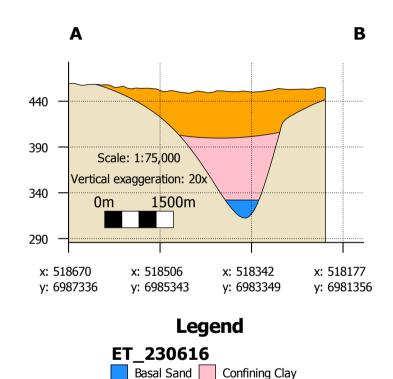
"Goldphyre's strategy is to focus on the high-grade core of the resource, targeting the Australian domestic demand for SOP"

ABSTRACTION METHOD - BRINE RECOVERY IS KEY

Palaeochannel Bore Fields


- EACH YEAR IN WESTERN AUSTRALIA BILLIONS OF LITRES OF WATER IS ABSTRACTED USING PALEOCHANNEL BOREFIELDS
 - For example Murrin Murrin: 12GL/year Mt Keith: 12gl/year st ives: 12gl/year
- ABSTRACTING WATER FROM BORE FIELDS
 - TRIED, TESTED AND PROVEN METHOD FOR ABSTRACTING LARGE VOLUMES OF BRINE
 - Permits control of grade & volumes grade control
 - IS MODULAR IN NATURE ALLOWS SEQUENTIAL CAPITAL EXPENDITURE FOR PROJECT DEVELOPMENT
- DEEP PALAEOCHANNELS (PALAEOCHANNEL = ANCIENT RIVER)
 - Permit resource exploitation from smaller surface areas
 - Resource can be accessed with significantly less capex compared to other methods
 - THE LAKE WELLS POTASH PROJECT DEEP PALAEOCHANNEL HAS HIGHLY FAVOURABLE SAND LAYERS

THE LAKE WELLS POTASH PROJECT

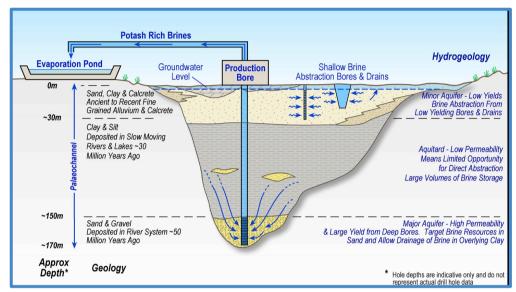

Model Section 2

Legend

Model Section 1

SANDS IN PALAEOCHANNEL LITHOLOGIES INDICATE STRONG BRINE YIELD POTENTIAL

Basement


Surficial Aquifer

BRINE ABSTRACTION METHODS

PALAEOCHANNELS BORE FIELD BRINE ABSTRACTION

- PERMEABILITY & POROSITY ARE KEY
- NETWORK OF BORES PUMP INTO EVAPORATION PONDS
- SCALEABLE, SIMPLE TO BUILD, COMMON

TRENCHING BRINE ABSTRACTION

- 100's of kms of trench networks typically required
- RECHARGE INTO CHANNELS FROM BENEATH IS KEY TO LONG TERM PRODUCTION
- DAMPIER SALT (RIO) OPERATION

BRINE RECOVERY

The Efficiency of Brine Recovery will Determine Success

- BRINE ABSTRACTION IS A FUNCTION OF THE PERMEABILITY AND SPECIFIC YIELD OF THE MATERIAL FROM WHICH IT IS BEING ABSTRACTED: SANDS HAVE HIGHER SPECIFIC YIELD THAN CLAYS
- BASAL AND UPPER SAND AQUIFERS ARE PRESENT AT GPH'S LAKE WELLS POTASH PROJECT

LOGISTICS

Bulk projects need quality infrastructure and good access

"Using existing infrastructure enables us to target faster development"

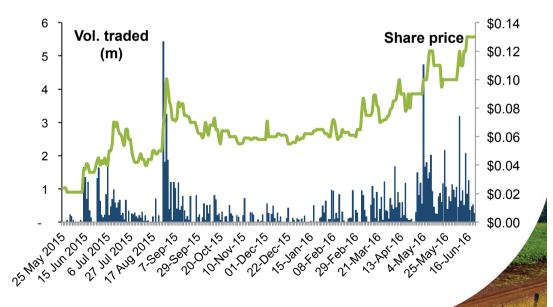
UNIQUE INVESTMENT PROPOSITION

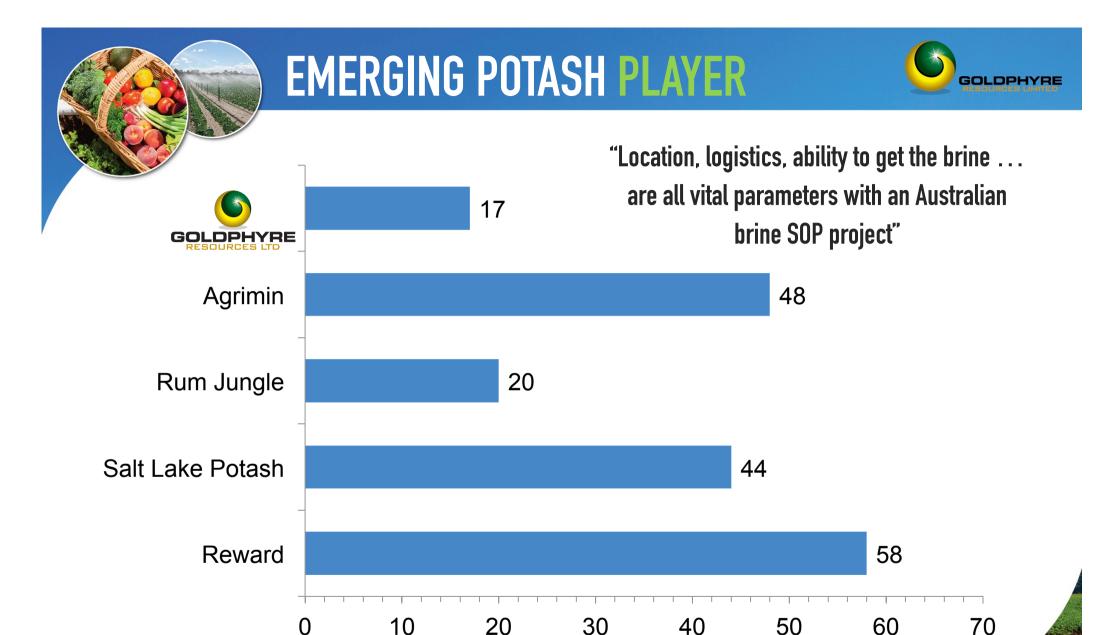
Australian Potash for Australian Farmers

- WA BRINE HOSTED SULPHATE OF POTASH (SOP) PROJECT
- AIMING TO FEED THE DOMESTIC DEMAND FOR SOP WHICH IS CURRENTLY 100% IMPORTED
- SUPERIOR MINING JURISDICTION IN THE EASTERN GOLDFIELDS OF WA
- SIMPLE, TRIED AND TESTED BRINE EXTRACTION METHOD USED ALL OVER AUSTRALIA
- **EXCELLENT INFRASTRUCTURE ALREADY IN PLACE**
- EMPHASIS ON ACHIEVING STRONG ECONOMIC RETURNS RATHER THAN FOCUSING ON BIG RESOURCES, BIG PRODUCTION PROFILES AND BIG **CAPEX**
- GROUND FLOOR INVESTMENT OPPORTUNITY WITH GPH CAPITALISED AT ONLY \$17M

"Goldphyre's strategy is to focus on the high-grade core of the resource, targeting the Australian domestic demand for SOP"

CORPORATE OVERVIEW


Financial information


Share price 24 June	\$0.115
Number of shares	146.9m
Options	95.4m
Market Capitalisation	\$16.8m
Cash 31 March	\$1.1m

"Goldphyre's shareholder register is built around long-term investors who understand we are focussed on stakeholder return"

Shareholders

Yandal Investments Pty Ltd (Mark Creasy)	19.9%
Board & management	8.6%
Top 20	54.7%

Market capitalisation A\$ undiluted

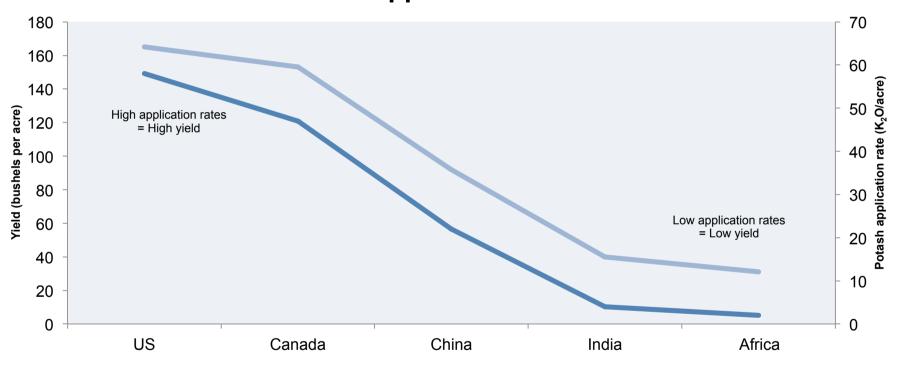
WHAT IS POTASH?

- Potash is a fertiliser that provides plants with the essential, non-substitutable macro-nutrient. potassium which all plants need to grow
- Potassium is the 'quality element' in plant growth, improving appearance, feel, texture and yield*
- Potassium is mined from the soil through plant growth, and POTASH replaces that potassium

Sulphate of Potash ('SOP') is the Premium Potash type

- SOP provides chloride free potassium, many soils can't tolerate additional chlorine
- SOP is premium priced over other potash types
- SOP is produced in several ways, with the cheapest cost of production being brine evaporation

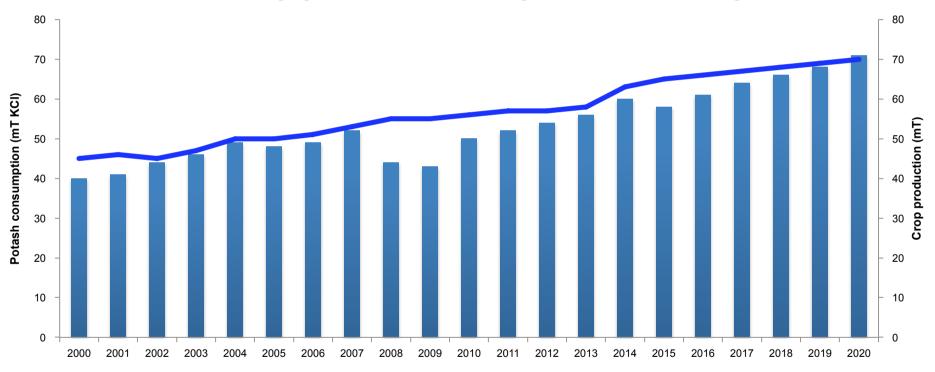
"A brine SOP project can capture the lowest cost of production of this essential premium priced fertiliser"


^{*} International Potash Institute

HOW USEFUL IS POTASH?

Corn Potash Application Rates & Yield

The effect of increasing potash application rates on crop yield is compelling


PotashCorp, Goldman Sachs Basic Materials Conference May 2016

POTASH DEMAND

Global crop production and potash consumption

More people means more food production means more potash consumption

PotashCorp, Goldman Sachs Basic Materials Conference May 2016

SOP ECONOMICS

"A domestic SOP brine operation can provide Australian farmers with certainty of supply and reduced exchange rate risks"

- 100% OF ALL POTASH USED IN AUSTRALIA IS IMPORTED
- THERE WILL BE SUBSTITUTION TO SOP IF IT IS PRICED RIGHT

SOURCE: INDUSTRY PRESENTATIONS, COMPANY WEBSITES, PUBLI Announcements

SOP PRODUCTION

SOP held in brine is produced through evaporation

1. Pumping

The palaeochannel bore-field pumps brine into evaporation ponds

Schoenite is converted, or crystallised, into SOP

2. Evaporating

Brines pass through evaporation ponds, dropping out salts along the way

SOP is washed, dried, screened and chipped ready for distribution to end user

3. Harvesting

Salts are harvested and transported to plant for conversion

"Using existing road infrastructure,

Goldphyre will test the feasibility of distributing its SOP product through a centrally located, wheatbelt location "

BRIEF HISTORY RAPID PROGRESS

Exploration Target* of 6Mt – 37Mt (specific yield)

FEBRUARY 2016

Seismic surveys double the length of the palaeochannel

DECEMBER 2015

Project area tripled in deal with Mark Creasy controlled entity

AUGUST 2015

High grade potash drill assays from surface to + 135m

Q3/Q4 Test bore pumping trials

Q3 Bench scale evaporation trials

Q3/Q4 JORC Resource upgrade

Q4 Test field evaporation ponds

Q1 2017 JORC Measured Resource

APRIL 2015

High-grade potash brine sample assays reported to market

*The potential quantity and grade of the Exploration Target is conceptual in nature. There has not yet been sufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

THE LAKE WELLS POTASH PROJECT

EXPERIENCED INCENTIVISED

The Board

MATT SHACKLETON, EXECUTIVE CHAIRMAN

BCOMM.. MBA. FCA. MAICD

OVER 20 YEARS EXPERIENCE IN CORPORATE & RESOURCE

COMPANY MANAGEMENT

BRENTON SIGGS, NON-EXECUTIVE DIRECTOR

BAPPSC., MAIG

OVER 25 YEARS EXPERIENCE IN MINERAL EXPLORATION AND

DEVELOPMENT

DEAN GOODWIN. NON-EXECUTIVE DIRECTOR

BAPPSC.. MAIG

OVER 25 YEARS EXPERIENCE IN MINERAL EXPLORATION.

DEVELOPMENT, AND MANAGEMENT

JOHN RIBBONS, COMPANY SECRETARY

Management

MATT SHACKLETON, EXECUTIVE CHAIRMAN

BRENTON SIGGS, EXPLORATION MANAGER

CARSTEN KRAUT, PRINCIPAL HYDROGEOLOGIST

Consultants

AQ2, HYDROGEOLOGICAL CONSULTANTS

PERITAS GROUP, ENGINEERING CONSULTANTS

CCC, BRINE CHEMISTRY CONSULTANTS

LISA CHANDLER, ENVIRONMENTAL ADVISOR

BOB THIRD, ENGINEERING ADVISOR

"We are continually building on our competencies through working with the best people we can find"

THE LAKE WELLS POTASH PROJECT

COMPELLING OPPORTUNITY

Ideally positioned for Rapid Project Growth and Development

- STRONG GRADES AND SCALE IN A HIGHLY CONDUCIVE ENVIRONMENT FOR EVAPORATION
- WELL FUNDED FOR NEXT PROGRAM OF WORKS: TEST PUMPING & EVAPORATION POND TRIALS Q3/Q4 2016
- STRONG AND SUPPORTIVE SHAREHOLDER BASE
- TRIED AND TESTED ABSTRACTION PROCESS: NOT REINVENTING THE WHEEL
- SIGNIFICANT INFRASTRUCTURE ALREADY IN PLACE
- EMPHASIS ON ACHIEVING STRONG ECONOMIC RETURNS RATHER THAN FOCUSING ON BIG RESOURCES AND BIG PRODUCTION PROFILES

DERISKING LAKE WELLS

	Q1 2016	Q2 2016	Q4 2016	Q1 2017
Exploration target	 Incorporate LWE data into exploration target data area COMPLETE 	• n/a	• n/a	• n/a
Inferred resource	 Collect samples for porosity and specific yield analysis COMPLETE 	 Brine sampling across horizons, geophysics PUBLISH Resource COMPLETE 	• n/a	• n/a
Indicated resource	 Porosity/Specific yield More brine chemistry Installation of piezometers 	Test bore drillingDownhole geophysicsNumerical modelling	Water abstraction environmental analysisPUBLISH Resource	• n/a
Measured resource	• n/a	Numerical modellingInter-bore continuity test- work	 Final aquifer test- work including permeability, specific yield, water chemistry variability 	• PUBLISH Resource

DERISKING LAKE WELLS

	Exploration target	Inferred resource	Indicated resource	Measured resource
Desktop studies	V	n/a	n/a	n/a
Auger sampling	/	V	✓	n/a
Core drilling	n/a	V	~	✓
Exploration drilling	~	V	✓	✓
Geophysics	V	V	✓	~
Test bores	n/a	n/a	✓	✓
Modelling	V	n/a	✓	✓
Environmental	n/a	n/a	✓	✓
Reporting	V	V	✓	✓
Not started	•	•	•	Complete

APPENDIX 1

The Lake Wells Potash Project
JORC Compliant Inferred
Mineral Resource Estimate
measured using Specific Yield

Inferred Resource for GPH Lake Wells Potash Brine (JORC compliant, taking account of Potential Future Economic Abstraction)

Hydrogeological Unit	Volume of Aquifer	Specific Yield	Drainable Brine Volume	K Concentration (mg/L)	SOP Grade (mg/L) (K * 2.23)	SOP Resource
	Mm³	Mean	Mm³	Weighted Mean Value	Weighted Mean Value	Mt
Western High (Grade Zone					
Surficial Aquifer	5,207	16%	833	3842	8568	7.1
Clay Aquitard	4,947	6%	297	4,244	9464	2.8
Basal Sand Aquifer	222	23%	51	4,539	10121	0.5
Sub Total (Mm³/Mt)	10,376		1181	4049	9028	10.5
Eastern 2	Zone					
Surficial Aquifer	3,435	16%	550	3428	7644	4.2
Clay Aquitard	2,833	6%	170	3,329	7423	1.3
Basal Sand Aquifer	231	23%	53	3,330	7426	0.4
Sub Total (Mm³/Mt)	6,499		773	3381	7540	5.9
Southern	Zone					
Surficial Aquifer	1,296	16%	207	2742	6115	1.3
Clay Aquitard	1,901	6%	114	2,620	5842	0.7
Basal Sand Aquifer	82	23%	19	2,871	6401	0.1
Sub Total (Mm³/Mt)	3,279		340	2674	5963	2.1
Tota	l					
Surficial Aquifer	9,937	16%	1383	3555	7929	12.6
Clay Aquitard	9,682	6%	467	3657	8155	4.7
Basal Sand Aquifer	535	23%	123	3761	8387	1.0
Total <i>(Mm³/Mt)</i>	20,154		1972	3610	8050	18.4

Inferred Resource based on modelled aquifer volume, mean specific yield and weighted mean K concentrations (derive from modelling)

COMPETENT PERSONS STATEMENTS

The information in the announcement that relates to Exploration Targets and Mineral Resources is based on information that was compiled by Mr Jeffery Lennox Jolly. Mr Jolly is a principal hydrogeologist with AQ2, a firm that provides consulting services to the Company. Neither Mr Jolly nor AQ2 own either directly or indirectly any securities in the issued capital of the Company. Mr Jolly has over 30 years of international experience. He is a member of the AusIMM and the International Association of Hydrogeologists. Mr Jolly has experience in the assessment and development of palaeochannel groundwater resources, including the development of water supplies in hypersaline palaeochannels in Western Australia. His experience and expertise is such that he qualifies as a Competent Person as defined in the 2012 edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore reserves". Mr Jolly consents to the inclusion in this report on the matters based on his information in the form and context in which it appears.

The information in this report that relates to Exploration results is based on information compiled by Mr Brenton Siggs. Mr Siggs is the principal geologist of Reefus Geology Services, a firm that provides geological consulting services to the Company. Mr Siggs is a director and shareholder of Goldphyre WA Pty Ltd, a company that holds ordinary shares and options in the capital of Goldphyre Resources Limited (Goldphyre Resources Limited, Annual Report 2015). Mr Siggs is a Non-Executive Director of Goldphyre Resources Limited. He is a member of the Australasian Institute of Geoscientists. Mr Siggs has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity currently being undertaken to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Siggs consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

THE LAKE WELLS POTASH PROJECT

Thankyou

www.goldphyre.com.au