

Final assays highlight Lake Wells Potash Project's quality and scale

Maiden Resource set for release next month

KEY POINTS

- Final assays from the Lake Wells Potash Project reveal continued strong grades and wide intersections of the premium-priced sulphate of potash
- Further intersections of both upper and lower basal sands reinforce potential for potash-bearing aquifers in both sand layers
- Test production bores to be installed into the upper and lower aquifers at two sites: test pumping planned for Q3

	Hole ID	Sample	interval	SOP grade		
	поте тр	Basal sand Upper sand		Basal sand	Upper sand	
Ň	PLAC025	12m	12m	8,351 mg/l	9,367 mg/	
New results	PLAC026	٨	6m	^	8,117 mg/l	
2	PLAC027	6m	6m	6,824 mg/l	6,177 mg/l	
	PLAC020	18m	12m	9,046 mg/l	5,921 mg/l	
ults	PLAC019	12m	18m	8,363 mg/l	6,571 mg/	
Previous results	PLWDD002	18m	*	9,745 mg/l	*	
vious	PLWDD003	24m	*	9,277 mg/l	*	
Pre	PLAC018*	7m	18m	9,585 mg/l	10,243 mg/l	
	PLWDD005	^	4.25m	^	8,496 mg/l	

* Hole cased through the upper sand with no sample taken REFER TO WEST LONG SECTION BELOW

^ Hole stopped in the upper sand and not drilled to basal layer REFER TO CROSS SECTION BELOW

2 further holes were drilled slightly north of the interpreted palaeochannel sand trend confirming very high SOP grades

	Hole ID	Sample	Sample interval				
results	Hole ID	From	То	SOP grade			
	PLAC022	17m	29m	10,213 mg/l			
New	PLAC023	0m	77m	10,423 mg/l			
	and	125m	131m	7,983 mg/l			

Goldphyre Resources (ASX: GPH) is pleased to announce strong final assays from the key basal and upper sands at its Lake Wells Potash Project, 500km north-east of Kalgoorlie.

street: 31 Ord Street, West Perth WA 6005 postal: PO Box 1941, West Perth WA 6872 t: +61 8 9322 1003 f: +61 8 9389 2199 e: info@goldphyre.com.au

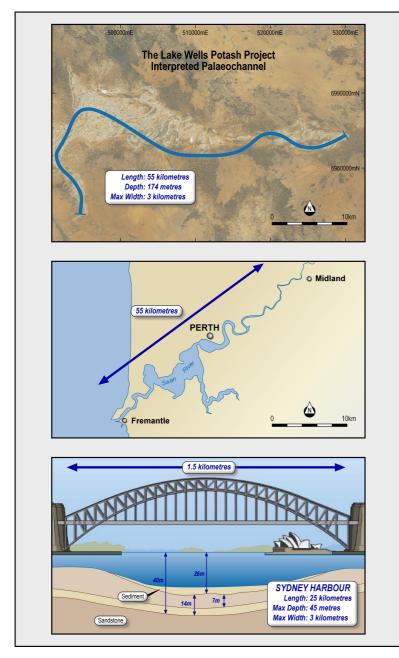


Figure 1: The scale of the Lake Wells Potash Project's palaeochannel system, the length of the Swan River in Western Australia and the Sydney Harbour

The assays stem from the seven remaining air-core holes from the May drilling program (Figure 2). The Company is on track to release the Lake Wells Potash Project's Maiden JORC Mineral Resource estimate in lune 2016.

The average SOP grades of assays from the March and May drilling program are within the range estimated in the Lake Wells Potash Project Exploration Targetⁱ.

The potential quantity and grade of the Exploration Target is conceptual in nature. There has not yet been sufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

Goldphyre Executive Chairman Matt Shackleton said the latest assays further strengthened the Company's confidence in the project's ability to be a significant producer of sulphate of potash for the Australian market.

"The results are particularly strong as we move west. We have more than 55km of palaeochannel, which as Figure 1 below demonstrates, leads to the significant brine volume as detailed in our exploration target" Mr Shackleton said.

"With depths to basement of up to 174 metres, significant widths of sand layers in the palaeochannel sediments, high grades of SOP from surface to basement and our existing logistical advantage, we are firmly of the view that the Lake Wells Potash Project will deliver value for Goldphyre shareholders.

"We are now planning the installation of test production bores in the September 2016 quarter, which will provide further key information about the economic potential of Lake Wells."

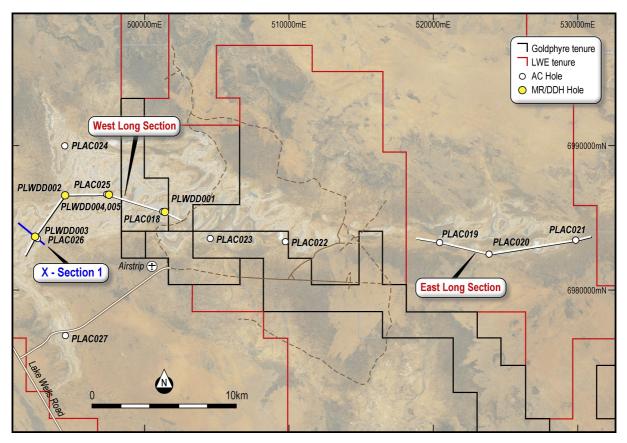


Figure 2: Drill hole location

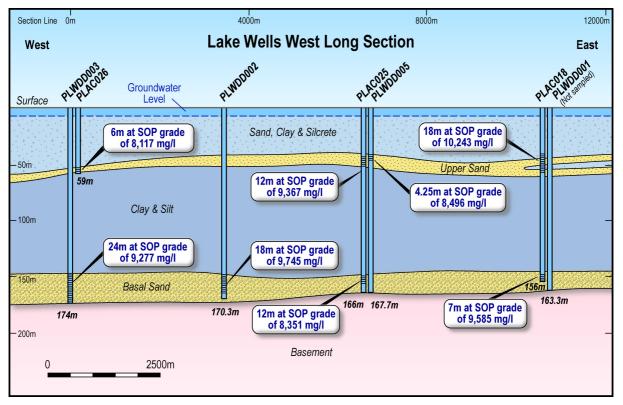


Figure 3: Long section of the western section of the project, showing basal and upper sand intersections

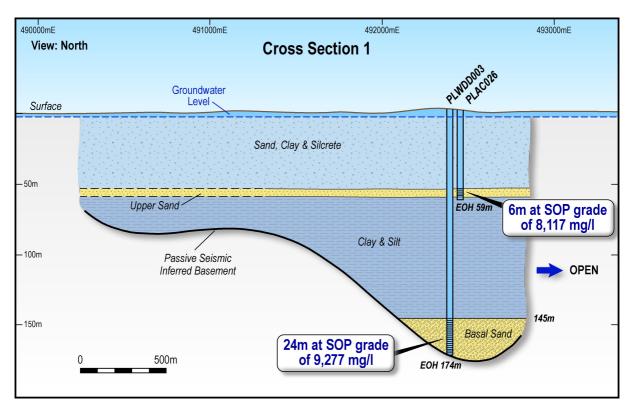


Figure 4: Cross section 1 showing drill holes PLWDD003 and PLAC026, western end of the Project

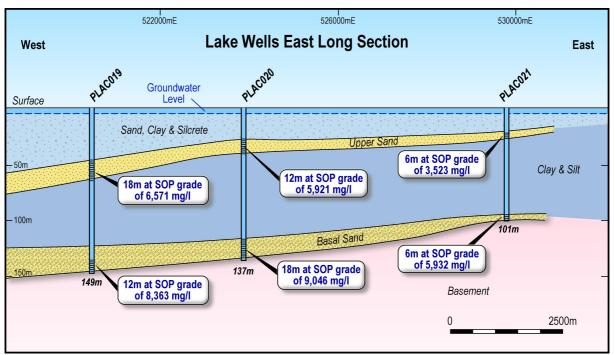


Figure 5: Long section of the eastern section of the project, showing basal and upper sand intersections

Technical discussion

Following the successful mud-rotary program in Marchⁱⁱ, where thick intersections of the high-yielding basal sand layer were recorded, further air-core drilling has been undertaken. The main aim of the air-core program was to assess the brine chemistry of the basal sand layer.

The basal sand intersections are considered highly significant because it is from this layer of the palaeochannel sediments that Goldphyre is proposing to abstract the largest volumes of the high-grade potash brines confirmed in previous drillingⁱⁱⁱ.

In addition to confirming the significant and consistent potash grades at depth, this recent air-core campaign again intersected significant widths of the upper sand unit, previously not considered in the Exploration Target the Company published in Marchⁱ. This upper aquifer has returned consistent brine concentrations with the potential to improve the yield possible from the palaeochannel system.

The sand units have been interpreted to comprise:

- i. upper sand typically medium to coarse-grained (0.5mm 2mm) quartz sand with sub-angular to sub-rounded grains, and;
- ii. basal sand typically medium to coarse-grained (0.5mm 2mm) quartz sand +/- minor well rounded quartz and lithic pebbles at the base.

Other potential aquifer units encountered in recent drilling include near surface coarsegrained evaporite and sand/silt, overlying friable and fragmental silcrete +/- laterite. Strong brine flows were commonly recorded in these lithology types.

Several drill-holes also returned a minor but persistent sand component to the clay/silt dominated inter-beds lying between the upper and basal sand units that exhibited strong brine flows.

The Exploration Target at the Lake Wells Potash Project is 6 - 37 million tonnes of contained sulphate of potash at a grade range of 8,900mg/l – 13,900mg/l. This estimate is based on the specific yield of the sand aquifer units. Goldphyre considers this the more relevant calculation because it represents the readily recoverable amount of potash. This in turn is the key figure used to calculate potential production rates and economic returns.

Goldphyre has also estimated a total in-situ brine of 79 - 123 million tonnes of contained sulphate of potash at a grade range of 11,400mg/l – 13,900mg/l⁻ based on the porosity of the entire regolith profile. This calculation is disclosed for industry comparison purposes only and, while a percentage of brine is likely to drain from the non-sand regolith materials, does not represent the amount of potash the Company believes it can abstract at the Project.

Figures 3 – 5 depict the lithology and sand aquifer units encountered at the various drill sites reported here. The palaeochannel clays typically have a specific yield of 2% - 3%, meaning that only a small fraction of the brines held within them can be extracted. In contrast, the upper and basal sands typically have a specific yield of 23% - 28%^{iv}, meaning that nearly ten times the brine held in the sand layers can be extracted compared to the clay layers. The higher permeability and specific yield material present in the palaeochannel, the more brine can be recovered.

The Lake Wells Potash Project

A drilling program conducted at Lake Wells in July 2015^v identified high-grade potash mineralisation both beneath the lake and the low dune areas surrounding the lake. That

drilling program generated wide intercepts of high-grade potash to depths of 135m (down-hole), which was the depth capacity of the drill rig used.

Passive seismic survey programs have been conducted at the Project^{vi vii}. This data permits the clear targeting of drill holes into the deepest parts of the palaeochannel. Unconsolidated sand-grit material often resides in the basal section of these palaeovalleys and the sand/grit material has a high permeability, which facilitates drainage of the overlying hydrogeological units.

Goldphyre has completed successfully mud rotary/diamond and air-core drilling programs aimed at understanding the basal sand layer and to confirm deep brine chemistry. The Company plans to release a Maiden JORC Resource Estimate in June 2016.

Contact

Matt Shackleton Executive Chairman e: <u>m.shackleton@goldphyre.com.au</u> m: +61 (0)438 319 841

Media:

Paul Armstrong/Nicholas Read Read Corporate **t:** +61 (8) 9388 1474

Competent Person's Statement

The information in the announcement that relates to Exploration Targets is based on information that was compiled by Mr Jeffery Lennox Jolly. Mr Jolly is a principal hydrogeologist with AQ2, a firm that provides consulting services to the Company. Neither Mr Jolly nor AQ2 own either directly or indirectly any securities in the issued capital of the Company. Mr Jolly has over 30 years of international experience. He is a member of the AusIMM and the International Association of Hydrogeologists. Mr Jolly has experience in the assessment and development of palaeochannel groundwater resources, including the development of water supplies in hypersaline palaeochannels in Western Australia. His experience and expertise is such that he qualifies as a Competent Person as defined in the 2012 edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore reserves". Mr Jolly consents to the inclusion in this report on the matters based on his information in the form and context in which it appears.

The information in this report that relates to Exploration results is based on information compiled by Mr Brenton Siggs. Mr Siggs is the principal geologist of Reefus Geology Services, a firm that provides geological consulting services to the Company. Mr Siggs is a director and shareholder of Goldphyre WA Pty Ltd, a company that holds ordinary shares and options in the capital of Goldphyre Resources Limited (Goldphyre Resources Limited, Annual Report 2015). Mr Siggs is a Non-Executive Director of Goldphyre Resources Limited. He is a member of the Australasian Institute of Geoscientists. Mr Siggs has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity currently being undertaken to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Siggs consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Forward Looking Statements Disclaimer

This announcement contains forward-looking statements that involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Appendix 1 Collar table

Hole	Hole Type	Northing (m)	Easting (m)	RL	Dip	Azimuth	Hole Depth (m)
PLWDD001	MR/DDH	6985400	501330	449	-90	0	163.3
PLWDD002	MR	6986505	494440	453	-90	0	170.3
PLWDD003	MR	6983715	492410	449	-90	0	174
PLWDD004	MR	6986592	497518	452	-90	0	59.1
PLWDD005	MR	6986645	497517	451	-90	0	167.7
PLAC018	AC	6985429	501345	449	-90	0	156
PLAC019	AC	6983282	520417	452	-90	0	149
PLAC020	AC	6982466	523824	446	-90	0	137
PLAC021	AC	6983435	529841	450	-90	0	101
PLAC022	AC	6983325	509759	456	-90	0	29
PLAC023	AC	6983556	504517	452	-90	0	131
PLAC024	AC	6989993	494462	449	-90	0	10
PLAC025	AC	6986621	497503	455	-90	0	166
PLAC026	AC	6983714	492431	449	-90	0	59
PLAC027	AC	6976879	494504	448	-90	0	101.9

Appendix 2 Results table

				Mg	Na	CI	TDS	HCO3 (Alk)	к	SO4	SOP
				mg/L	mg/L	mg/L	g/kg	mg/L	mg/L	mg/L	mg/L
SampleID	HoleID	From	То								
LPD7001	PLWDD005	42	46.25	9900	67900	118550	206	60	3810	27900	8496.3
LPD7003	PLWDD002	146	164	11900	76200	124550	235	70	4370	31200	9745.1
LPD7004	PLWDD003	147.5	171.5	11100	70400	124550	217	100	4160	29000	9276.8
LPD7007	PLAC018	5	11	10700	75000	132600	227	30	4480	28800	9990.4
LPD7008	PLAC018	11	17	11100	78300	137200	234	30	4730	29100	10547.9
LPD7009	PLAC018	17	23	11000	77900	139300	236	30	4740	28600	10570.2
LPD7010	PLAC018	23	29	11100	79700	139650	237	30	4810	29300	10726.3
LPD7011	PLAC018	29	35	11200	80500	139300	238	30	4800	29000	10704
LPD7012	PLAC018	35	41	11100	80000	140000	236	30	4780	28500	10659.4
LPD7013	PLAC018	41	47	10900	79200	138750	237	30	4710	28700	10503.3
LPD7014	PLAC018	47	53	10800	77700	138600	235	30	4620	28700	10302.6
LPD7015	PLAC018	53	59	10700	78000	138250	236	20	4450	29300	9923.5
LPD7016	PLAC018	143	149	5580	43300	72700	134	820	3350	15300	7470.5
LPD7017	PLAC018	149	155	11000	81900	141200	239	40	4470	30000	9968.1
LPD7021	PLAC018	155	156	5350	40500	69550	127	860	3270	14900	7292.1
LPD7023	PLAC019	5	11	5720	42800	71150	130	100	1800	17500	4014
LPD7024	PLAC019	11	17	6090	47800	79200	145	90	2040	18300	4549.2
LPD7025	PLAC019	17	23	6600	53600	90100	159	70	2310	19600	5151.3
LPD7026	PLAC019	23	29	7920	64600	110500	IS	50	2910	22700	6489.3
LPD7027	PLAC019	35	41	6710	60300	104850	178	30	2770	19000	6177.1
LPD7028	PLAC019	41	47	6620	59000	102400	176	40	2700	19200	6021
LPD7029	PLAC019	47	53	6750	64000	108550	187	30	2890	19100	6444.7
LPD7030	PLAC019	53	59	6760	63900	108200	186	40	2890	19400	6444.7
LPD7031	PLAC019	59	65	7040	67700	114000	195	20	3060	19700	6823.8
LPD7032	PLAC019	65	71	6960	65400	112400	192	30	3020	19600	6734.6
LPD7034	PLAC019	71	77	6780	64100	106950	186	40	2880	19500	6422.4

				Mg	Na	CI	TDS	HCO3 (Alk)	К	SO4	SOF
				mg/L	mg/L	mg/L	g/kg	mg/L	mg/L	mg/L	mg/
SampleID	HoleID	From	То								
LPD7035	PLAC019	77	83	6770	63800	108550	186	40	2910	19200	6489
LPD7036	PLAC019	83	89	6690	64500	108200	186	40	2920	19100	6511
LPD7038	PLAC019	89	95	6780	64400	109250	188	30	2940	19200	6556
LPD7039	PLAC019	95	101	6790	65400	109950	189	30	2970	19400	6623
LPD7040	PLAC019	101	107	6800	65800	111000	189	20	2970	19800	6623
LPD7041	PLAC019	107	113	350	3420	5600	12	370	340	1050	758
LPD7042	PLAC019	113	119	1260	12900	21450	42	360	770	3570	1717
LPD7043	PLAC019	119	125	575	5730	10100	19	330	450	1590	1003
LPD7045	PLAC019	125	131	2390	24300	37300	76	210	1300	6510	289
LPD7046	PLAC019	131	137	1810	17900	28800	59	270	1030	4980	2296
LPD7047	PLAC019	137	143	7250	73800	126700	212	30	3590	20100	8005
LPD7048	PLAC019	143	149	7850	77800	135750	226	30	3910	21300	8719
_PD7050	PLAC020	0	5	3480	33900	57800	106	100	1710	10100	3813
_PD7051	PLAC020	5	11	3410	33300	57550	104	90	1670	10100	3724
LPD7052	PLAC020	11	17	3460	33300	57550	106	90	1680	10800	3746
_PD7053	PLAC020	17	23	4940	43800	74550	136	70	2130	15500	4749
_PD7054	PLAC020	23	29	4740	44300	73400	133	70	2090	14900	4660
_PD7055	PLAC020	29	35	6320	58300	95500	170	60	2620	19100	5842
PD7055	PLAC020	35	41	6430	59000	96450	170	60	2690	19500	5998
PD7057	PLAC020	41	41	5960	55800	91200	162	70	2540	18200	5664
PD7059	PLAC020	47	53	5660	53100	88550	158	50	2410	17300	5374
PD7060	PLAC020	53	59	5720	51900	87550	157	60	2400	17100	535
.PD7061	PLAC020	59	65	5670	51900	85850	154	60	2410	17100	5374
PD7062	PLAC020	65	71	6050	55400	92650	164	50	2540	18200	5664
_PD7063	PLAC020	71	77	6060	54900	91900	163	50	2560	17900	570
PD7064	PLAC020	77	83	5940	54000	91600	163	50	2500	17600	557
PD7065	PLAC020	83	89	6070	55600	93750	166	40	2560	18300	570
_PD7066	PLAC020	89	95	6080	55600	95600	170	40	2580	18200	5753
PD7067	PLAC020	95	101	6030	56100	93500	167	40	2580	17800	5753
PD7068	PLAC020	101	107	6340	59000	98200	174	30	2670	19100	5954
PD7069	PLAC020	107	113	7620	73200	127300	211	40	3680	20200	820
_PD7070	PLAC020	113	119	7720	74800	124550	211	40	3720	20600	829
PD7072	PLAC020	119	125	8220	79400	132450	222	10	3970	22100	8853
PD7073	PLAC020	125	131	8270	80800	134550	226	20	3970	22100	885
PD7074	PLAC020	131	137	8800	84500	143450	239	<10	4230	23600	9432
PD7075	PLAC021	11	17	4230	33800	56500	106	70	1350	14100	301
PD7076	PLAC021	17	23	4320	39900	65300	118	60	1610	13800	359
_PD7077	PLAC021	23	29	4190	38900	64600	117	60	1580	13200	3523
PD7078	PLAC021	29	35	3750	35300	57750	105	50	1460	11900	3255
_PD7079	PLAC021	35	41	3910	36600	55450	110	50	1520	12600	3389
_PD7080	PLAC021	41	47	4740	42000	69350	126	50	1720	15500	3835
_PD7081	PLAC021	47	53	4180	37700	69700	114	50	1540	13400	3434
_PD7082	PLAC021	53	59	3890	35000	61950	107	40	1460	12600	325
_PD7083	PLAC021	59	65	3830	34400	57900	107	30	1460	12300	3255
_PD7084	PLAC021	65	71	3620	33200	54750	102	40	1410	11600	3144
LPD7085	PLAC021	71	77	4010	36200	58800	110	30	1520	12900	3389
LPD7086	PLAC021	77	83	4200	38800	63900	118	20	1610	13700	3590

				Mg	Na	CI	TDS	HCO3 (Alk)	к	SO4	SOP
				mg/L	mg/L	mg/L	g/kg	mg/L	mg/L	mg/L	mg/L
SampleID	HoleID	From	То								
LPD7087	PLAC021	83	89	3930	36500	60200	112	20	1540	12800	3434.
LPD7089	PLAC021	89	95	5360	56100	91200	159	20	2440	15900	5441.
LPD7090	PLAC021	95	101	5820	58200	100000	169	30	2660	17100	5931.
LPD7093	PLAC022	5	11	3570	37500	61950	110	180	2150	9690	4794.
LPD7094	PLAC022	11	17	5800	56900	98250	170	110	3310	16400	7381.
LPD7095	PLAC022	17	23	7480	76900	133650	219	50	4530	20300	10101
LPD7097	PLAC022	23	29	7530	78500	135900	222	50	4630	19600	10324
LPD7099	PLAC023	0	5	10100	75200	129400	226	40	4450	27900	9923.
LPD7100	PLAC023	5	11	10600	77000	135550	231	40	4780	28800	10659
LPD7101	PLAC023	11	17	10700	77200	136450	233	40	4730	29400	10547
LPD7103	PLAC023	17	23	10900	77300	137700	233	40	4730	30300	10547
LPD7104	PLAC023	23	29	11000	80200	140850	240	40	4870	30300	10860
LPD7106	PLAC023	29	35	10800	80200	140650	241	40	4840	29900	10793
LPD7108	PLAC023	35	41	10800	81200	141200	242	40	4860	30000	10837
LPD7109	PLAC023	41	47	10500	78400	135900	232	40	4700	29700	1048
LPD7110	PLAC023	47	53	10100	78700	137500	235	40	4600	29400	1025
LPD7111	PLAC023	53	59	9500	81000	139950	238	30	4400	29400	9812
LPD7112	PLAC023	59	65	9590	77400	134000	229	<10	4240	28100	9455
LPD7113	PLAC023	65	71	10600	78900	139250	236	30	4710	29900	10503
_PD7114	PLAC023	71	77	10000	78300	137300	230	40	4560	28500	10168
_PD7116	PLAC023	77	83	475	4970	7700	15	140	290	1530	646.
LPD7117	PLAC023	83	89	480	6600	9950	19	220	360	1770	802.
LPD7118	PLAC023	89	95	440	5620	8650	17	IS	300	1800	713.
LPD7119	PLAC023	95	101	265	1980	3250	7	140	120	900	267.
LPD7120	PLAC023	101	107	565	8590	13200	25	160	450	2340	1003
_PD7121	PLAC023	107	113	330	2840	4700	9	140	170	1050	379.
_PD7122	PLAC023	113	119	375	5160	8150	15	160	260	1680	579.
PD7123	PLAC023	119	125	5730	53300	88050	157	120	2500	18600	557
_PD7125	PLAC023	125	131	8120	74900	128150	218	30	3580	26300	7983
_PD7129	PLAC024	0	5	2990	19500	32350	68	80	1220	10100	2720
_PD7130	PLAC024	5	10	4170	23900	42950	86	160	1430	13100	3188
_PD7131	PLAC025	5	11	5990	41700	73600	136	90	2950	15400	6578
_PD7132	PLAC025	11	17	6570	44400	79050	144	40	3140	16900	7002
_PD7133	PLAC025	17	23	6960	47300	83650	150	270	3310	18000	7381
_PD7134	PLAC025	23	29	6610	44900	78000	142	50	3150	16700	7024
_PD7135	PLAC025	29	35	7160	47200	84500	152	40	3340	18100	7448
LPD7136	PLAC025	35	41	6390	44500	76750	140	40	3050	16400	6801
LPD7137	PLAC025	41	47	10200	73300	125900	219	10	4250	28600	9477
LPD7139	PLAC025	47	53	10500	73600	126950	222	<10	4150	28700	9254
LPD7140	PLAC025	53	59	10400	73000	125700	219	10	4100	29600	914
LPD7141	PLAC025	59	65	9610	68300	115500	204	20	3950	27200	8808
_PD7142	PLAC025	65	71	9290	64100	111800	198	30	3880	25500	8652
LPD7143	PLAC025	71	77	9180	65100	112500	197	30	3840	25700	8563
LPD7144	PLAC025	77	83	9670	68000	118850	210	10	4000	27500	892
LPD7145	PLAC025	83	89	9710	68200	119200	210	20	3960	27700	8830
LPD7146	PLAC025	89	95	10000	69300	119900	215	10	4070	28500	9076
LPD7147	PLAC025	95	101	10400	73000	125900	222	<10	4110	29900	9165

				Mg	Na	CI	TDS	HCO3 (Alk)	к	SO4	SOP
				mg/L	mg/L	mg/L	g/kg	mg/L	mg/L	mg/L	mg/L
SampleID	HoleID	From	То								
LPD7149	PLAC025	101	107	10100	70800	124650	IS	20	3960	29300	8830.8
LPD7150	PLAC025	107	113	7700	55400	95750	175	20	3000	22200	6690
LPD7151	PLAC025	137	143	5510	44400	73400	137	150	2120	17500	4727.6
LPD7152	PLAC025	143	149	9680	76600	128000	226	20	3710	30600	8273.3
LPD7153	PLAC025	149	155	9650	75600	126950	223	20	3740	30600	8340.2
LPD7155	PLAC025	155	161	9590	77000	127100	224	20	3750	30900	8362.5
LPD7158	PLAC026	11	17	5690	43800	73950	137	50	3110	15900	6935.3
LPD7159	PLAC026	17	23	6550	49500	83450	150	40	3410	18100	7604.3
LPD7160	PLAC026	23	29	6490	48500	83800	153	40	3410	18200	7604.3
LPD7161	PLAC026	29	35	6480	48200	85050	153	40	3390	18500	7559.7
LPD7163	PLAC026	35	41	6770	50000	86450	156	50	3460	19100	7715.8
LPD7165	PLAC026	41	47	7450	52400	89800	180	70	3480	20800	7760.4
LPD7166	PLAC026	47	53	8860	56600	100350	173	10	3640	24700	8117.2
LPD7168	PLAC027	11	17	3630	29700	51600	97	70	2230	11900	4972.9
LPD7173	PLAC027	29	35	4750	34000	60400	115	50	2540	13800	5664.2
LPD7174	PLAC027	35	41	5020	35500	62850	117	40	2590	13600	5775.7
LPD7175	PLAC027	47	53	4720	34400	59500	111	50	2410	12800	5374.3
LPD7177	PLAC027	53	59	5460	40600	70250	131	20	2770	14700	6177.1
LPD7178	PLAC027	59	65	3820	29400	50000	95	20	1900	10700	4237
LPD7179	PLAC027	71	77	6070	46700	79400	145	40	3050	17000	6801.5
LPD7180	PLAC027	83	89	6000	46000	79950	148	30	3040	17000	6779.2
LPD7181	PLAC027	89	95	6090	48200	80800	148	30	3120	17100	6957.6
LPD7182	PLAC027	95	101	5920	47100	80800	148	30	3060	16900	6823.8

Appendix 3 Reporting of Exploration Results – JORC (2012) Requirements

Section 1	: Sampling	Techniques and Data

Criteria	ampling Techniques and Data JORC Code Explanation	Commentary
Sampling	• Nature and quality of sampling (eg cut channels,	• Brine sampling was completed via Mud
techniques	random chips, or specific specialised industry	Rotary-Diamond (MR-DDH) cased with PVC
	standard measurement tools appropriate to the	and Air core (AC) drilling technique.
	minerals under investigation, such as down hole	
	gamma sondes, or handheld XRF instruments,	
	etc). These examples should not be taken as	
	limiting the broad meaning of sampling.	
	• Include reference to measures taken to ensure	
	sample representivity and the appropriate	
	calibration of any measurement tools or systems	• AC Drilling - Groundwater (brine) and
	used.	selective mineral (lithological) samples
	• Aspects of the determination of mineralisation	collected. Brine sample recovery procedure
	that are Material to the Public Report. In cases	included collecting brine sample through
	where 'industry standard' work has been done this	the cyclone in a clean 9l bucket at the start
	would be relatively simple (eg 'reverse circulation	of drilling each 6m rod. Where possible,
	drilling was used to obtain 1 m samples from	flow rate data was logged via air lifting
	which 3 kg was pulverised to produce a 30 g	using a stop watch and 9l bucket beneath
	charge for fire assay'). In other cases more explanation may be required, such as where there	the cyclone. Not every rod may produce a brine sample depending upon formation
	is coarse gold that has inherent sampling	characteristics. Flow rate information
	problems. Unusual commodities or mineralisation	collected using compressed air drill
	types (eg submarine nodules) may warrant	technique is considered indicative. Regolith
	disclosure of detailed information.	samples from AC drilling were collected
	uisclosure of actanea information.	from the cyclone and laid out in rows of 10
		or 20 for geological logging and (where
		applicable) mineral sampling. Particle size
		distribution (PSD) samples (weight 1-2 kg)
		were collected over representative sample
		intervals in the majority of drill holes.
		Results for the PSD samples are pending.
		Mud Rotary Drilling - 50mm PVC cased Mud
		Rotary drill holes were airlifted for 1-2
		hours using a 180cfm trailer-mounted
		compressor to remove remnant drilling
		fluids introduced at time of drilling. A
		pressure transducer was then placed in the
		borehole to measure water levels, while a
		small 40mm submersible pump pumped
		brine to the surface. After 30 minutes, the
		brine was sampled and the transducer data
		downloaded to allow estimation of
		hydraulic parameters.
		Selective triple tube PQ core was logged on
		site, sealed in plastic and transported in
		plastic trays to Perth office for further
		processing.
Drilling technique	rs • Drill type (eg core, reverse circulation, open-hole	• Mud Rotary-Diamond Drilling (MR-DDH) (5
	hammer, rotary air blast, auger, Bangka, sonic,	holes, Appendix 1) was completed by Terra
	etc) and details (eg core diameter, triple or	Drilling, Kalgoorlie, using a Hanjin
	standard tube, depth of diamond tails, face-	Powerstar 7000 track-mounted diamond
	sampling bit or other type, whether core is	rig. Selective PQ Triple tube Core (diameter

Criteria	JORC Code Explanation	Commentary
	oriented and if so, by what method, etc).	 85mm, no orientation) used to penetrate hard regolith zones and basement was collected with core recovery generally over 90%. Air core (AC) drilling using Schramm 685 with 125mm vacuum blade bit (10 holes, Appendix 1) was completed by Austral Drilling, Perth. All holes vertical.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 See Sampling Techniques. AC Drilling - Drilling with care (eg. clearing hole at start of rod, regular cyclone cleaning) but majority of lithological samples moist/wet due to primary aim of targeting brine samples. Mud Rotary Drilling – Lithological sample recovery and quality was generally low due to poor development of wall cake and mixing with drill cuttings from entire hole column. Sample recovery/grade relationship not applicable to groundwater brine sampling. All brine samples collected in 80ml bottles.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 AC Drilling - Qualitative lithological logging completed by inspection of washed Air- core drill cuttings at time of drilling with end-of-hole (EOH) samples and 1m chip samples collected in plastic chip trays for future reference. Flow rate data was collected where possible along with Magnetic Susceptibility data (Fugro RT-1 unit). Mud Rotary-Diamond Core drilling - Triple tube PQ core lithologically logged. Logging is qualitative in nature.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 PQ Triple tube core awaiting core cutting for processing. AC Drilling - Brine water samples were collected with a clean bucket from the rig cyclone. 80ml plastic sterile sample bottles were used to collect sample. At the end of each rod, air turned on and brine (if

Criteria	JORC Code Explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 laboratory sample. A small sample batch (~10%) despatched to umpire lab for comparison purposes. Once collected, brine samples were kept in cool, dark storage and delivered to laboratory within 7 days of field collection. Major cations were analysed using either ICP-AES or ICP-MS techniques. Analysis of Cations in brine solution by Mohr Titration. Sulphate was calculated from ICP-AES Determination. Specific Gravity (SG) calculated using Pycnometric method. Total Dissolved Solids (TDS) calculated by Gravimetric method. Sample size (80 ml bottle) appropriate for brine being sampled. The samples were collected for major cation (Ca, K, Na, Mg) and anions (Cl, sulphate), alkalinity, Specific Gravity, Total Dissolved Solids (TDS) and selective multi-element (dissolved metals) analysis (Appendix 2). This work was completed at Bureau Veritas Laboratory, Perth. Samples were analysed with Lab Codes GC006, GC026, GC033, GC004, and SO101 and SO102 methods. Reference brine solution samples dispatched to laboratory reported an average error of <10%. Umpire samples were sent to ALS Metallurgy Laboratory in Perth. Potash brine results calculated with primary potassium (K) values and K₂SO₄ equivalent. No upper and lower cuts applied. For multielement suite - (Lab Code SO101 and SO102) elements included (but not limited to): Al, As, Cr, Co, Fe, Pb, Ni, U, Th, Zn, V). No anomalous or significant multi-element results recorded in brine samples. Quality control process and internal laboratory checks demonstrate acceptable levels of accuracy. Further Data QA/QC checks undertaken include: Database QA/QC reporting including box and whisker plots Primary laboratory (Bureau Veritas and ALS Metallurgy) duplicate comparison These checks demonstrate acceptable levels of accuracy and consistency in the dataset.

Criteria	JORC Code Explanation	Commentary
Verification of	• The verification of significant intersections by	• QA/QC procedures included reference
sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 OAQC procedures included reference solution and duplicate samples collected and analysed at both the primary and independent umpire laboratory to evaluate analytical consistency. Internal laboratory standards and instrument calibration are completed as a matter of course. Sample data was captured in the field and digital data entry completed both in the field and in the Company's Perth office. All drill and sample data was then loaded into the Company's DATASHED database and validation checks completed to ensure data accuracy. Analytical results as csv and pdf
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 files were received from the laboratory. Drill collars were surveyed by handheld Garmin 60 GPS with horizontal accuracy (Easting and Northing values) of +-5m. Grid System - MGA94 Zone 51. Topographic elevation using published GSWA geological maps and hand held GPS with Z range +-15m suitable for relatively flat salt lake/dune terrain.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Hole spacing on approximate 3-6 km drill pattern targeted upper and basal sand paleochannel zones with 6m sample intervals (where possible) across the targeted salt lake system and meets SEG and Bench mark standards for Inferred Brine Resource classification (Houston, Butcher, Ehren, Evans, Godfrey (2012) The Evaluation of Brine Prospects and the Requirement for Modification to Filing Standards. Economic Geology v106, pp1225-1239. The data spacing is considered sufficient to establish the degree of geological and grade continuity appropriate for mineral resource estimation procedures. Samples taken from intervals downhole are considered indicative due to groundwater seepage below the static water table level (SWL) and it is difficult to estimate the degree of down-hole brine 'mixing' using the Air-core drilling technique. Brine samples collected every 6m where possible, are to some extent, naturally composited due to the nature of the sample medium and compressed air drill technique.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures 	 Vertical drill holes targeted the deepest sections of the palaeovalley system within interpreted flat lying transported sedimentary profile and weathered- transitional basement rocks.

Criteria	JORC Code Explanation	Commentary
	is considered to have introduced a sampling bias, this should be assessed and reported if material.	
Sample security	• The measures taken to ensure sample security.	 Samples collected from the field airfreighted to Perth laboratory with sealed eskies or delivered by Company personnel to laboratory direct.
Audits or reviews	• The results of any audits or reviews of sampling	• Data reviews are summarised under QA/QC
	techniques and data.	of data above.

Section 2: Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
	• Type, reference name/number, location and	• The LAKE WELLS POTASH PROJECT, located
and land tenure status		 140 km northeast of Laverton, Western Australia consists of tenements: E38/1903, E38/2113, E38/2114, E38/3021, E38/3039, E38/2742 and E38/2742 and E38/2744. All tenements held 100% by Goldphyre Resources Limited (GPH) except E38/2742 and E38/2744 held by Lake Wells Exploration Pty. Ltd (LWE). GPH has entered into a Sale and Split Commodity Agreement (dated on or about 11th December, 2015) with LWE. All tenements are in good standing. There is no Native Title Claim registered in respect of the project tenure. Accordingly, there is no requirement for a Regional Standard Heritage Agreement to be signed. At time of writing, the tenements have expiry dates ranging between 1/5/2017 and 9/8/2020.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Previous reconnaissance AC and Goldphyre AC/RC drilling has been completed in the Lake Wells – WEST Area. Companies that have completed previous exploration in the region include WMC Ltd, Gold Partners Ltd, Kilkenny Gold NL, Anglogold Ashanti Australia Ltd, Croesus Mining NL and Terra Gold Mining Ltd.
Geology	 Deposit type, geological setting and style of mineralisation. 	• Targets include: Brine hosted potash mineralisation associated with the Lake Wells playa lake system.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the 	 Air-core drilling and Mud Rotary-Diamond drill data completed by Goldphyre Resources Limited included in report and collar information for drill holes is included in Appendix 1.

Criteria	JORC Code Explanation	Commentary
	Competent Person should clearly explain why	
	this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 reported as down-hole length and no minimum and maximum cut-off grades have been applied. Average Sulphate of Potash (SOP) values reported in the table(s) above from brine samples collected in a particular interval although several drill holes returned sample intervals in which groundwater was present but insufficient brine sample was available for sampling and analysis. No metal
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	essentially a flat resource hosted within a sedimentary aquifer and the underlying weathered basement. Vertical drillhole intercepts are interpreted to represent the true thickness of the deposit.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	and North Point shown along with cross and long section figures are included in the accompanying report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	collected are displayed in tables and/or appendices in the accompanying report
Other substantive exploration data	should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	for further potash brine exploration. Geophysical data (TMI, FVD, Gravity) processing along with extensive previous explorers' drill data has contributed further to the understanding of the salt lake system and palaeotopography on the project area.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<i>Substantive Exploration data</i> summarised above, the design of follow up drilling program(s) (including test bore drilling) are under preparation.

iii Refer to ASX announcement 26 August 2015 'Lake Wells Potash Drilling Results'. That announcement contains the relevant statements, data and consents referred to in this announcement. Apart from that which is disclosed in this document, and in the ASX announcement 15 October 2015 'Quarterly Activities Report', Goldphyre Resources Limited, its directors, officers and agents, are not aware of any new information that materially affects the information contained in the 26 August 2015 announcement.

iv Johnson, D.J. 1967. Specific Yield. Compilation of specific yields for various materials. U.S. Geol.Survey. Water Supply Paper 1662-D, 74 pp.

v Refer to ASX announcement 26 August 2015 'Lake Wells Potash Drilling Results'. That announcement contains the relevant statements, data and consents referred to in this announcement. Apart from that which is disclosed in this document, and in the ASX announcement 15 October 2015 'Quarterly Activities Report', Goldphyre Resources Limited, its directors, officers and agents, are not aware of any new information that materially affects the information contained in the 26 August 2015 announcement.

vi Refer to ASX announcement 15 December 2015 'Seismic Survey Defines Extensive, Deep Palaeovalley'. That announcement contains the relevant statements, data and consents referred to in this announcement. Apart from that which is disclosed in this document, Goldphyre Resources Limited, its directors, officers and agents, are not aware of any new information that materially affects the information contained in the 15 December 2015 announcement.

vii Refer to ASX announcement 8 February 2016 'Second Seismic Survey Doubles Size of Deep Palaeovalley'. That announcement contains the relevant statements, data and consents referred to in this announcement. Apart from that which is disclosed in this document, Goldphyre Resources Limited, its directors, officers and agents, are not aware of any new information that materially affects the information contained in the 8 February 2016 announcement.

i Refer to ASX announcement 8 March 2016 'Major Sulphate of Potash Exploration Target at Lake Wells'. That announcement contains the relevant statements, data and consents referred to in this announcement. Apart from that which is disclosed in this document, Goldphyre Resources Limited, its directors, officers and agents, are not aware of any new information that materially affects the information contained in the 8 March 2016 announcement.

ii Refer to ASX announcement 7 April 2016 'Drilling intersects substantial widths of key basal sands'. That announcement contains the relevant statements, data and consents referred to in this announcement. Apart from that which is disclosed in this document, Goldphyre Resources Limited, its directors, officers and agents, are not aware of any new information that materially affects the information contained in the 7 April 2016 announcement.